

SA WG2 Temporary Document
Page 1

[bookmark: _GoBack]SA WG2 Meeting #117	S2-165801165902
17-21 October 2016, Kaohsiung City, Taiwan 	(revision of S2-16xxxx)

Source:	Nokia, Alcatel-Lucent Shanghai Bell Cisco Systems, Inc., Ericsson
Title:	Response to “Interim agreements for KI 7” proposal in S2-165801
Document for:	Discussion and Approval
Agenda Item:	6.10.7X
Work Item / Release:	FS_NextGen / Rel-14
Abstract of the contribution: Proposes Response to “Interim agreements for KI 7” proposal in S2-165801interim agreements for key issue 7.
Discussion

1	Introduction
Note for the reader: Original text in S2-165801 appears without revision marks. Nokia additions/response to the original proposal shown with track changes.
In previous meetings the notions of stateless network functions and stateless architectures have – directly or indirectly – been entertained by various contributions. Similarly, some of the high level 5G architectures in Section 7 of TR 23.799 assume the existence of a state database in order to achieve a “stateless system” and a means to exchange data and notifications in addition to signalling between network functions of the same or different type.
This paper aims at enabling 3GPP SA2 to have an informed discussion about the various technical aspects of stateless network functions and also the new challenges that this concept introduces –areas which have not been touched upon in previous meetings.
The paper closes by discussing whether these challenges have been properly addressed and whether the related architecture enhancements should be specified. In line with this, the paper proposes related interim agreements for Key issue 7 for TR 23.799.
2	Definitions
In the context of this paper, the following terms are defined:
-	Stateless network function. A control plane network function which only holds subscriber and session state for a given session while performing transactions for that session. When a new transaction is triggered, the state information is fetched from a state database; once the transaction has been completed, the session state is written to the state database and purged in the network function.
-	Stateless system. A system which consists of stateless network functions. The state database is used to pass state information between stateless network functions of the same, or optionally different type.
2	Achieving stateless NF
Enabling stateless network functions requires various design decisions to be taken, including:
-	whether the existing subscriber data base (SDM) can also be used as a state repository
-	whether a single physical (common and centralized) state data base can be used or whether a local architecture for the state data base is required [Nokia] or whether a single logical (common and distributed) state data base can be used.
-	how stateless network functions are dynamically selected when transactions need to be performed
-	how restoration and recovery are supported in a stateless system
-	whether the interface between a network function and the state databased should be standardized
2.1	Use of common repository for subscription profile and session state information
Subscription profile information is typically much more static than session state information, which generally changes every time there is an interaction between the UE and the network and also within the network.
This means that the technology needed for a subscriber database is very different, e.g. it mostly requires read operations and a comparatively lower number of TPS (Transactions Per Second) per subscriber session, compared to what is required for a session state database. Hence use of a common repository for the Session DB and State Repository will result either in suboptimal use of resources or suboptimal performance. In conclusion, these two should be kept separate from a standardization point of view.
> [Nokia] The traffic profile for session and subscriber data is different, but database implementations should be able to cope with different requirements of TPS. So this argument seems to be an implementation specific issue (bad implementations of databases may work best when either all data are “mostly static” like subscription profile information, or all data are dynamic like session states).
Conclusion 1: Separate repositories should be used for storage of subscription profile and session state information.
> The characteristics of session and subscriber data are different and the administrative domain in which they are located is different (session data = local PLMN* vs. subscription data = HPLMN). The storage can be in the same logical data layer (see 2.2).
*) local PLMN refers to the PLMN where the network functions reside.
2.2	Centralized vs local state repositories
If a common repository is used for storing the state information of all the CN network functions, then we call it centralized state repository. On the other hand, if each NF has its own state repository for storing its own state information, then we call it local state repository. We evaluate these two approaches in the following sections.
> [Nokia] A centralized state repository may be a single physical common database, or a single logical but physically distributed database. The three approaches are depicted below:
Local State Repositories:

Figure 2.2-1 Local State Repositories:

Single Physical Common State repository:

Figure 2.2-2 Single Physical Common State repositories

Single Logical Common State Repository:

Figure 2.2-3 Single Logical Common State Repository

2.2.1	Latency for accessing the state information
Some of the NFs, e.g. SMCF, PF, AF, etc. are typically centrally located as compared to the other NFs in the CN, e.g. MMF, which benefit from being deployed at the edge of the CN. Thus, since the NFs are physically distributed, a centralized state repository will result in higher access latency (i.e. time required for read and write operations) at least for some of the NF, i.e. for those NFs which are located far from the centralized state repository. This in turn delays completion of transactions executed by those network functions.
Observation 1: With a centralized state repository the latency to access state information will be higher for some of the NFs, which in turn will also increase the delay for completing transactions carried out by those network functions.
> [Nokia] The Data Layer provides the flexibility to store data locally or in some central place as needed. Further, different local or multi-site replications schemas can be applied flexibly. The data layer framework should allow operators to replicate and store data in such a way that necessary latency requirements can be met i.e. data layer should allow support for geo redundancy and data replication.

In summary, with a logically centralized state repository (which supports geo-redundancy and data replication), the latency for context access are similar to latency for accessing local state repositories.
NOTE: The location and component(s) of the Data Layer(s) is up to deployments to decide.
2.2.2	Cost of information transport
Depending upon the services and features activated for a given subscriber, session state information can easily amount to a few hundred kilobytes or a megabyte even. This means that a state repository implies a significant amount of traffic between the network function and the state repository – solely for fetching and storing session state information. It is worth emphasizing that this occurs each time a transaction is to be performed by a given network function. In summary, this approach significantly increases the I/O overhead and related to this, the cost of information transport for network functions (regardless of whether the state repository is centralized or local). In case of a centralized state repository the cost of transport will be even higher since long distance links are involved.
Observation 2: A state repository (in particular a centralized state repository) increases the cost of information transport for all NFs.
> [Nokia] Session context information is in the order of few KBs (even if it includes both standardized context and opaque) considering EPC and IMS functional entities. The number quoted in the first line “hundred KBs, MBs” seems to be really out of proportion.
In a virtualized environment, there are 2 ways to store data:
1) Cache within Network functions.
2) Independent storage layer.
For the duration of procedures such as Attach, Service request, the network function is expected to store the context information in its cache. Upon completion of the procedure, the network function can still store in the cache or store it in an independent storage layer. Having storage capabilities in each and every control plane functions is disadvantageous considering cost and it is not flexible/elastic. Furthermore, it takes away the storage space in a transaction processing compute machine (= network function). Especially in a virtualized environment, an independent storage layer improves the resiliency of the network by decoupling the “compute” from “storage”. The I/O for data retrieval is just a consequence of virtualization while providing the benefit of independent scalability. Even if there is no 3GPP defined standard interface for this purpose, this I/O still exists. On the other hand, benefit of standardized interface allows multi-vendor capability in operator’s environment.
2.2.3	Ownership of State Repository
For roaming and network sharing cases, some of the NFs belong to different administrative domains, e.g. a different PLMN or different MVNO. Also, some of the NFs, e.g. AF and SCEF, may belong to a 3rd party. In all these cases, a centralized state repository for all the NFs within CN (i.e. a shared state repository) appears infeasible and impractical.
Observation 3: In some cases, since the NFs may belong to different administrative domains, having a centralized state repository for all the NFs in the CN may not be practical.
> [Nokia] Each administrative domain could own the data layer or the data layer can support an interface that spans across administrative domains (inter PLMN, roaming PLMN).
For use cases where data sharing is required, the necessary inter-working between different networks needs to be ensured as it is generally required for inter-PLMN communication. It is not too far fetched to think about a model as shown 2.2-3 whereby data can be shared by an operator and service provider via SLA but the ownership model is up to deployments to decide.
Functional entities from other administrative domains may access some UE context data, according to SLA, e.g. for data capability exposure to a CEF in the HPLMN or to enable a new VPLMN to fetch the UE context data from the old VPLMN upon inter-PLMN mobility.

2.2.4	Saving in overall state information, by storing a single copy of the overlapping state information in a centralized State Repository
One of the main motivations typically quoted for a centralized state repository is to reduce the duplication of overlapping state information across different NFs within the CN and to avoid having to pass state information between network functions.
However, since different functionality is assigned to different NFs, the overlap between their session state information is very low as compared to NF-specific session state information that each NF is required to maintain. The mobility management function is for instance required to store information related to the UE’s mobility patterns and related to that, optimized paging area information, the security context and associated keys, the allocated TAI list etc. The session management function is required to store the policy and charging rules activated for the UE, information related to traffic steering, data usage credit information received from the OCS, other state information associated with the selected UPFs etc.
A quick analysis based on 3GPP TS 23.008 clause 5.2A suggests that only around 35% of the subscriber parameters are overlapping between the MME and S/PGW (i.e. parameters stored by both of these NFs). When we consider this number between MME, HSS and S/PGW, it drops to around 14%. [Nokia] When we consider this number between MME1 and MME2, it goes up to almost 100%.
It is worth noting that these figures are based on the standardized parameters and the corresponding state information. Once implementation specific parameters and corresponding state information is also considered, which is very different across NFs and also across vendors, the amount of overlap decreases even further.
Thus, the reduction and hence saving in overall state information, by storing only one copy of the overlapping state information in a common/centralized state repository is not significant. On the other hand, there will be a significant cost for transportation of the information between the NF and the centralized state repository.
Observation 4: The reduction and hence saving in overall state information, by storing only one copy of the overlapping state information in a common/centralized state repository is not significant.
> [Nokia] The main motivation for a logically centralized state repository is not limited to store data across different VNFs only once, but also to:
· enable stateless virtualized Network Functions in a cloud infrastructure thus improve resiliency of the network function,
· support unified data storage across network functions in the network,
· supports network capability exposure and Data analytics,
· support enhanced NF resiliency to failure scenarios,
· support cost effective solutions for massive IoT (not requiring any VNF resources for inactive devices)

Existing EPC restoration procedures also require storage of state information in a centralized repository, which is achieved in EPC by vendor specific solutions.
2.2.5	Summary
Based on the above 4 observations, it can be concluded that a local state repository, i.e. each NF having its own State Repository, is preferable compared to the centralized/common State Repository.
Conclusion 2: Local state repositories, i.e. each NF has its own state repository to store its own state information, is preferred over a centralized/common state repository.
>[Nokia] The Data Layer provides the flexibility to store data locally or in some central place, as needed, and to maintain different local or multi-site replications.

2.3	Interface between a NF and its respective State Repository
Each NF maintains two types of state information: subscriber session level state information and NF level state information.
For the subscriber session level state information, a small part is standardized, e.g. the MM function storing IMSI, APN, QoS, security context, etc. On the other hand, a relatively large portion is implementation-specific, e.g. UE’s mobility pattern, last visited cell IDs, paging strategy information, etc.
The NF-level state information, which comprises of statistics, operator policies, heuristics for fine tuning of the session handling parameters, the map of available and allocated resources across all the sessions etc. is entirely implementation specific.
Thus, to really make a NF stateless, we have to ensure that each NF is allowed to store the standardized as well as the vendor specific state information into its state repository.
[Nokia] The DL allows to store a minimum set of standardized data, as well as vendor specific information.
One option is to define a transparent container for allowing the NF to store the implementation specific state information in the State Repository. However, in this approach, the transparent container – which will be relatively large – cannot be read or updated partially, e.g. if only one of the parameter within the transparent container needs to be read or updated. As a consequence, this approach will be very inefficient.
Besides that, the frequency of updating the state information partially or fully in the state repository could be very high.
> [Nokia] There are other options different from transparent container, which allow partially read and/or update.
In addition, implementations may want to choose different frequencies and strategies for fetching and updating state information (as compared to exchange of parameters/information between two NFs, which is for obvious reasons fully standardized). However, the state synchronization algorithm must be fully standardized in order to define protocols and predictable interactions between NFs and the state repository (since the protocol used will play a pivotal role in determining the time/delay for accessing the state repository). It is important to study and fully understand the complexity this entails in definition and standardization of NF interactions, in order to ensure that the purpose of key issue #7 is not defeated, that is, to find solutions that enable agile and rapid deployment of new services by allowing for flexible interconnect between control plane network functions. Also, different NF may need to employ different technologies and protocols to meet their performance and cost target.
Finally, given the implementation specific state that every network function inevitably has, only network functions of the same type and from the same vendor can fully leverage the information stored in the state repository, the benefits of a standardized interface are not obvious. Even more so, the benefit of a standardized interface on 3GPP architecture level is not obvious.
Considering all these aspects, it is best to leave the interface between the NF and its respective state repository beyond the scope of 3GPP standardization and leave it to implementations.
Conclusion 3: The details of a potential interface between a NF and its state repository should be left to implementation.
>[Nokia] 3GPP has standardized the Ud interface in the UDC architecture and it appears this is used successfully in the market. None of the arguments above seem to have hindered this deployment.
Likewise, the protocol details over the NGx interface (Network Function <> DL) should be specified to enable operators to deploy a single data layer framework capable to interwork with any vendor's Network Function.
Additionally, Data models should be specified for the standardized data that are stored in the data layer and shared between Network Functions.
Data models for private data used by network function will remain implementation specific like in the UDC architecture. Use of container object is not the only option for private data retrieval. There are other options that allow retrieval or update of partial context efficiently.
Only stable state should be stored in the Data Layer (similar to data storage in a centralized repository for EPC restoration).
2.4 	Areas requiring further study
2.4.1	Selection of stateless network functions
In a stateless system, a serving network function of a given type needs to be dynamically assigned each time a transaction is to be executed by this function type. For example, if a service request from a UE is to be handled, then a serving control plane function needs to be first selected or assigned (Note that this paper does not assume a specific control plane architecture granularity, the considerations made here are generally applicable.) The same applies if the policy control function decides to install or update policy rules in the control plane function. Obviously the same has to be done to support the reverse interaction, i.e. a serving policy function needs to be dynamically assigned if the control plane function intends to interact with the policy function. Similarly, if the user plane function needs to interact with the control plane function (e.g. to trigger paging if a downlink packet has been received while the UE is in Idle state) a control plane function needs to be dynamically assigned.
As of now, the details of the selection mechanism for stateless network functions have not been studied in SA2. This includes aspects such as whether the selection mechanism is centralized or distributed, how information about available stateless network functions (i.e. the list of candidate stateless functions to assign a transaction to) is made available and kept up to date (e.g. in case of stateless network function failures, etc.) towards the selection function, how load balancing can be supported, etc.

Figure A: Without coordination, independent selection of stateless network functions can easily lead to race conditions such as multiple CCFs being selected for the same session.
[Nokia] Potential Solution for race condition in Figure A:
The Data Layer is not shown in the above figure. The Data Layer enables to keep track of the Network Function instance currently serving a UE. See section 6.7.5.2.2 of S2-165772. The Data layer will e.g. receive the access request from CCF A first (and handle it) and when receiving the access request from CCF B, it will reject the access with an indication that CCFB should forward the DDN to CCF A.
The selection of an CCF instance for a UE that is starting a new transaction and that was not served by any CCF instance is similar in principle to the selection of a new CCF instance first registering to the network, regardless of whether the CCF is stateful or stateless.

It is also worth emphasizing that multiple selection decisions for the same session may happen simultaneously. As depicted in Figure A, a serving control plane function may need to be selected in response to a UE’s Service Request. At the same time however, a control plane function may need to be assigned to enable the user-plane function to trigger paging. If the selections are not coordinated, this can easily lead to different control plane functions being selected for the same session (which is to be avoided to avoid race conditions and repercussions on other network functions).
Finally, the same scenario can also happen for subsequent requests from the same peer. As depicted in Figure B, the UE may send a Service Request directly followed by a Detach Request. Clearly, the system must not continue to execute the Service Request when receiving the Detach Request. The key question is however how this can be achieved in a stateless system?

Figure B: Without coordination subsequent requests from the UE may be handled by different CCFs, which in turn may prevent efficient implementations (e.g. abortion of the on-going Service Request procedure by CCF B).
[Nokia] Potential Solution for race condition in Figure B:
Similar solution as above. The Data Layer is not shown in the above figure. The Data Layer enables to keep track of the Network Function instance currently serving a UE. See section 6.7.5.2.2 of S2-165772. The Data layer will e.g. receive the access request from CCF A first (and handle it) and when receiving the access request from CCF B, it will reject the access with an indication that CCFB should forward the Detach Request to CCF A.
The selection of an CCF instance for a UE that is starting a new transaction and that was not served by any CCF instance is similar in principle to the selection of a new CCF instance first registering to the network, regardless of whether the CCF is stateful or stateless.

One option may be to apply some coordination (e.g. in the RAN in this case) to ensure stickiness (i.e. to ensure that the same CCF is selected for subsequent requests. This however defeats the original idea, which was to enable any CCF to handle transactions. Another alternative may be to inform all CCFs about some/all requests, which in turn severely impacts the scalability of the solution.
How these issues can be avoided (e.g. by means of coordination for the selection of stateless network functions) has not been studied in SA2 as of now.
Observation 5: Selection of stateless network functions poses new system challenges, e.g. where and how to perform the selection and how to avoid race conditions (and related system malfunction) resulting from concurrent network function selection processes. Addressing these issues is key to understand the viability of the notion of stateless network functions.
> [Nokia] If an VNF fails during a certain procedure, some data may be lost. This is true with or without the Data Layer. But the Data Layer allows to restore the services from the last stable state. This is similar to the existing EPC restoration procedure, which also rely on storing state information in a centralized repository, and for which a failure may also happen in the middle of a transaction.
The Data Layer provides a framework that inherently supports the restoration feature.

2.4.2	Restoration and recovery in a stateless system
As per definition, a network function (for a given session) is only stateless when not performing a transaction for that session. This raises the question how network function failures are handled in situations where stateless network functions are actually not stateless (i.e. while performing a transaction).
While some may argue that – by design – a stateless system will be able to cope with failures of stateless network functions, it is not obvious how this is achieved while a given function holds state and is in the middle of a procedure, which may have side effects on other functions in the system.
In this context it is worth noting that transactions often involve multiple network functions so that a network function needs to keep the session state until the parts of the transaction that involves other functions have been completed. As a result, the duration during which a stateless network function is actually not stateless, i.e. during which it needs to hold state may be long.
Also, the system behaviour is not obvious in case a network function fails in the middle of a transaction that involves multiple network functions. Instead, it appears likely that even a stateless system – specifically while functions are not stateless – may still require a solution for restoration and recovery in addition.
If so, then also the interaction and coordination between a potential restoration and recovery solution and the selection of stateless networks needs to be better understood.
Observation 6: Even a stateless system – specifically while functions are not stateless – is likely to still require a solution for restoration and recovery in addition. Studying this area is not only important to define the complete solution, it is also key to enable an informed decision whether the promises of stateless network functions hold.
2.4.3	Efficiency of information exchange via a state database
While key challenges (and benefits) related to separating state from network functions have not been studied yet, it is already clear that the solution comes at a significant price.
In case a state repository (centralized or local) is used to pass state information (e.g. UE context information) between network functions (of the same or different type), the overhead doubles compared to simply passing context information in a direct message between the involved network functions. This is because the information first needs to be sent to (or updated in) the state repository before it eventually can be delivered in a second step to the target network function.
> [Nokia] NFs need to store states, either locally or centralized, and the stored states need to be read later. This paragraph seems to suggest that states need not be stored/read at all. Storing by one NF and then reading by another NF is not doubling overhead compared to storing by one NF and then reading by the same NF.
The overhead becomes even larger if direct signalling needs to be exchanged in addition between network functions. While claims have been made that direct signalling can be avoided, the actual solution has not been described in sufficient detail yet.
Observation 7: Using a state repository to pass information between network functions doubles overhead compared to passing state information using a direct message. The overhead becomes even larger if direct signalling needs to be exchanged in addition between network functions.
> [Nokia] Not a valid observation. See above.
E.g. in a TAU scenario, the new MMF reads the UE context data from the DL, instead of exchanging S10-like messaging which would also require the old MMF to read its UE context data and the new MMF to store the data retrieved via messaging.
Besides, there are use cases like ULI where a data centric approach is advantageous, e.g. NF1 notifies a change of a data object and then every subscriber to the data change gets notified. By doing this, we allow to potentially bypass Network Functions where there is no direct interface. Signalling affects only the producer and consumer of the data.
The basic idea is not to do any communication via Data Layer but for use cases where it makes sense. The advantage is also for cases where a VNF at an arbitrary point in time needs the data and can access it readily.
2.4.3	Summary
The above observations emphasize that various areas (e.g. selection of network functions, avoidance of race conditions, restoration and recovery in stateless systems, etc.) require further and thorough study. Stateless architectures (or enablers for the same) that have been introduced into TR 23.799 have not addressed these areas.
Addressing these areas is not only important to bridge gaps in these solutions but will also help to evaluate whether the promises of stateless network functions still hold when also more complex (yet real) scenarios are considered.
Conclusion 4: Various important areas of stateless network functions (e.g. selection of network functions, avoidance of race conditions, restoration and recovery in stateless systems, efficiency of information transfer via a state database, etc.) require further and more thorough study. Only once these gaps have been bridged the pros/cons of stateless functions (and enablers for the same such as a standardized state repository) can be evaluated.
> [Nokia] See previous responses,

2.7	Conclusion
The following conclusions have been made throughout the paper:
-	Conclusion 1: Separate repositories should be used for storage of subscription profile and session state information.
-	Conclusion 2: Local state repositories, i.e. each NF has its own state repository to store its own state information, is preferred over a centralized/common State Repository as a result of the following observations:
-	With a centralized state repository the latency to access state information will be higher for some of the NFs, which in turn will also increase the delay for completing transactions carried out by those network functions.
-	A centralized state repository increases the cost of information transport for all NFs.
-	The NFs may belong to different administrative domains, having a centralized state repository for all the NFs in the CN may not be practical.
-	The reduction and hence saving in overall state information, by storing only one copy of the overlapping state information in a common/centralized state repository is not significant.
-	Conclusion 3: The details of a potential interface between a NF and its state repository should be left to implementation.
-	Conclusion 4: Various important areas of stateless network functions (e.g. selection of network functions, avoidance of race conditions, restoration and recovery in stateless systems, efficiency of information transfer via a state database, etc.) require further and more thorough study. Only once these gaps have been bridged the pros/cons of stateless functions (and enablers for the same such as a standardized state repository) can be evaluated.
In other words, the notion of separating state from network functions (and enablers for the same such as a normative state database) based on a standardized interface towards a data layer or data base are not a viable basis for an agreement on the next generation core network architecture at this point in time.
In conclusion, it is proposed to leave the decision to separate state (e.g. UE context information) from a given network function and how to design the interface between that network function and its state repository to implementation.
Proposal
It is proposed to agree to the following changes to TR 23.799.
[bookmark: _Toc399511925][bookmark: _Toc324232210][bookmark: _Toc326248701][bookmark: _Toc399743733][bookmark: _Toc248905717]* * * 1st Change * * * *
[bookmark: _Toc461542730][bookmark: _Toc461542731]8.8	Interim Agreements on Key Issue #7
Interim agreements for Key issue #7 “Function Granularity and Interconnection of them” are as follows:
1.	Any two NFs interacts with each other directly while avoiding the functional and signalling impact on unrelated NF.
NOTE: 	This does not preclude to pass information via a third NF if two NFs do not interact directly, e.g. if MM received subscription information from SDB then it can pass it to SM if there is an interaction between MM and SM (e.g. during PDU connection establishment procedure).
2.	Procedures (i.e. set of interactions between two NFs) are defined as a service, wherever applicable, (e.g. by following the guidelines defined in Annex E) so that its re-use is possible. This will be evaluated on a case by case basis when specifying procedure.
3.	The NF selection and discovery shall be supported to enable NF selection and discovery;
NOTE:	 whether it utilizes the NF Repository function or an enhancement of the DNS server to reach this functionality is left for CT WG to determine.
Editor's note:	It is FFS whether the NF Repository Function returns the logic identities or names/addresses of the Destination NFs.

[Nokia] Leaving it all up to implementation doesn’t solve the problems. Rather it might result in each VNF vendor deploying an independent data layer thus resulting in system integration issues. Why do we need standards if everything can be left up to implementation? In our view, it is a requirement for an open standard to help the operators enable multi-vendor deployment at the same time solving the related technical issues encountered.
* * * End of changes * * * *
3GPP
SA WG2 TD

image2.emf
NF1NF2

NF3

State

repository

oleObject2.bin
NF1

NF2

NF3

State repository

image3.emf
NF1NF2

NF3

State

repository

State

repository

State

repository

Single logical State

Repository

oleObject3.bin
NF1

NF2

NF3

State repository

State repository

State repository

Single logical State Repository

image4.wmf
U

E

C

C

F

A

C

C

F

B

U

P

F

U

E

i

s

i

n

C

N

I

d

l

e

s

t

a

t

e

U

p

l

i

n

k

d

a

t

a

a

v

a

i

l

a

b

l

e

S

e

r

v

i

c

e

R

e

q

u

e

s

t

D

o

w

n

l

i

n

k

d

a

t

a

a

v

a

i

l

a

b

l

e

D

o

w

n

l

i

n

k

d

a

t

a

n

o

t

i

f

i

c

a

t

i

o

n

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

1

oleObject4.bin

image5.wmf
U

E

C

C

F

A

C

C

F

B

S

e

r

v

i

c

e

R

e

q

u

e

s

t

E

x

e

c

u

t

e

S

e

r

v

i

c

e

R

e

q

u

e

s

t

P

r

o

c

e

d

u

r

e

D

e

t

a

c

h

R

e

q

u

e

s

t

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

1

oleObject5.bin

image1.emf
NF1NF2

NF3

State

repository

for NF1

State

repository

for NF2

State

repository

for NF3

oleObject1.bin
NF1

NF2

NF3

State repository for NF1

State repository for NF2

State repository for NF3

